Positive SSL
Scales & Standards 1 Scales & Standards 2 The Larger Scales p3 Standard Measurements DCC Analogue Control

Welcome To


Great Informative Sites For Beginners and professionals.

Allan Gartner's Wiring For DCC: www.wiringfordcc.com/intro2dcc.htm

DCC Concepts:                          www.dccconcepts.com/index.htm

NMRA:                                       https://www.nmra.org/

How DCC works                                                                                               

A short, mid packet, example of a DCC signal and its encoded bit stream   

Something similar to the information highway all young people love.

Just like communicating around social media sites but controlling your own

systems instead.

A DCC command station, in combination with its booster, modulates the voltage on the track to encode digital messages while providing electric power.

The voltage to the track is a bipolar DC signal. This results in a form of alternating current, but the DCC signal does not follow a sine wave. Instead, the command station quickly switches the direction of the DC voltage, resulting in a modulated pulse wave. The length of time the voltage is applied in each direction provides the method for encoding data. To represent a binary one, the time is short (nominally 58µs for a half cycle), while a zero is represented by a longer period (nominally at least 100µs for a half cycle).

Each locomotive is equipped with a mobile DCC decoder that takes the signals from the track and, after rectification, routes power to the motor as requested. Each decoder is given a unique running number, and will not act on commands intended for a different decoder, thus providing independent control of locomotives anywhere on the layout, without special wiring requirements. Power can also be routed to lights, smoke generators, and sound generators. These extra functions can be operated remotely from the DCC controller. Stationary decoders can also receive commands from the controller in a similar way to allow control of turnouts/points, uncouplers, signals and other operating accessories (such as station announcements) and building lighting.

In a segment of DCC-powered track, it is possible to power a single analogue model locomotive by itself (or in addition to) the DCC equipped engines, depending on the choice of commercially available base systems. The technique is known as zero stretching. Either the high or the low pulse of the zero bits can be extended to make the average voltage (and thus the current) either forward or reverse. However, because the raw power contains a heavy AC component, DC motors heat up much more quickly than they would on DC power, and some motor types (particularly coreless electric motors can be damaged by a DCC signal.

History and Protocols.

In 1992 Stan Ames, who later chaired the NMRA/DCC Working Group, investigated the Märklin/Lenz system as possible candidate for the NMRA/DCC standards.

When the NMRA Command Control committee requested submissions from manufacturers for its proposed command control standard in the 1990s, Märklin and Keller Engineering submitted their systems for evaluation. The committee was impressed by the Märklin/Lenz system and had settled on digital early in the process. The NMRA eventually licensed the protocol from Lenz and extended it. The system was later named Digital Command Control.

The proposed standard was published in the October 1993 issue of Model Railroader magazine prior to its adoption.

The DCC protocol is the subject of two standards published by the NMRA: Standards and Conformance.

S-9.1 specifies the electrical standard, and;

S-9.2 specifies the communications standard.


Several recommended practices documents are also available.

The DCC protocol defines signal levels and timings on the track.

DCC does not specify the protocol used between the DCC command station and other components such as additional throttles.

A variety of proprietary standards exist, and in general, command stations from one vendor are not compatible with throttles from another vendor but these are also changing.

The great advantage of digital control is the individual control of locomotives wherever they are on the layout. With analogue control, operating more than one locomotive independently requires the track to be wired into separate "blocks" each having switches to select the controller. Using digital control, locomotives may be controlled wherever they are located.

Digital locomotive decoders often include "inertia" simulation, where the locomotive will gradually increase or decrease speeds in a realistic manner. Many decoders will also constantly adjust motor power to maintain constant speed. Most digital controllers allow an operator to set the speed of one locomotive and then select another locomotive to control its speed while the previous locomotive maintains its speed.

Recent developments include on-board sound modules for locomotives as small as N scale.

Wiring requirements are generally reduced compared to a conventional DC powered layout. With digital control of accessories, the wiring is distributed to accessory decoders rather than being individually connected to a central control panel. For portable layouts this can greatly reduce the number of inter-board connections - only the digital signal and any accessory power supplies need cross baseboard joints.


In 2006 Lenz, together with Kühn, Zimo and Tams, started development of an extension to the DCC protocol to allow a feedback channel from decoders to the command station. This feedback channel can typically be used to signal which train occupies a certain section, but as well to inform the command station of the actual speed of an engine. This feedback channel is known under the name Railcom, and was standardized in 2007 as:  NMRA RP 9.3.1.

Competing Systems

In Europe, Selectrix is an open NEM standard, but the Märklin Digital system is proprietary.

From the US, the Rail-Lynx system provides power with a fixed voltage to the rails while commands are sent digitally using infrared light. Other systems include the Digital Command System and Trainmaster Command Control.

Several major manufacturers (including Roco and Hornby and Bachmann), have entered the DCC market alongside makers which specialize in it (including Lenz, Digitrax, ESU, ZIMO, Kühn, Tams, North Coast Engineering (NCE), and CVP Products' EasyDCC, Sound Traxx, Lok Sound, and Train Control Systems). Most Selectrix central units are multi protocol units supporting DCC fully or partially (e.g. Rautenhaus, Stärz and MTTM).

The first UK command control built around digital technology was the Zero 1 system created by Hornby in 1980. This system worked well from the start and was supported by the major US chip maker Texas Instruments .

Unfortunately, in the same year as the system was released, Hornby went into receivership. By the late 1980s, despite returning to trading, Hornby ceased to support this remarkable innovation.

Digital Command Control. DCC